skip to main content


Search for: All records

Creators/Authors contains: "Gregory, Ann C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Microbes and their viruses are hidden engines driving Earth’s ecosystems from the oceans and soils to humans and bioreactors. Though gene marker approaches can now be complemented by genome-resolved studies of inter-(macrodiversity) and intra-(microdiversity) population variation, analytical tools to do so remain scattered or under-developed. Results Here, we introduce MetaPop, an open-source bioinformatic pipeline that provides a single interface to analyze and visualize microbial and viral community metagenomes at both the macro - and microdiversity levels. Macrodiversity estimates include population abundances and α- and β-diversity. Microdiversity calculations include identification of single nucleotide polymorphisms, novel codon-constrained linkage of SNPs, nucleotide diversity ( π and θ ), and selective pressures (pN/pS and Tajima’s D ) within and fixation indices ( F ST ) between populations. MetaPop will also identify genes with distinct codon usage. Following rigorous validation, we applied MetaPop to the gut viromes of autistic children that underwent fecal microbiota transfers and their neurotypical peers. The macrodiversity results confirmed our prior findings for viral populations (microbial shotgun metagenomes were not available) that diversity did not significantly differ between autistic and neurotypical children. However, by also quantifying microdiversity, MetaPop revealed lower average viral nucleotide diversity ( π ) in autistic children. Analysis of the percentage of genomes detected under positive selection was also lower among autistic children, suggesting that higher viral π in neurotypical children may be beneficial because it allows populations to better “bet hedge” in changing environments. Further, comparisons of microdiversity pre- and post-FMT in autistic children revealed that the delivery FMT method (oral versus rectal) may influence viral activity and engraftment of microdiverse viral populations, with children who received their FMT rectally having higher microdiversity post-FMT. Overall, these results show that analyses at the macro level alone can miss important biological differences. Conclusions These findings suggest that standardized population and genetic variation analyses will be invaluable for maximizing biological inference, and MetaPop provides a convenient tool package to explore the dual impact of macro - and microdiversity across microbial communities. 
    more » « less
  2. Robinson, Peter (Ed.)
    Abstract Motivation Viruses infect, reprogram, and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. Results Here we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240,311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from “conservative” to “eXtremely Conservative” resulted in 37,841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by ∼24% on average (up to ∼42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem. Availability The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143). Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract

    Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.

     
    more » « less